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Abstract

A large collection of estimation phenomena (e.g. biases arising when adults or children estimate remembered locations of objects
in bounded spaces; Huttenlocher, Newcombe & Sandberg, 1994) are commonly explained in terms of complex Bayesian models.
We provide evidence that some of these phenomena may be modeled instead by a simpler non-Bayesian alternative.
Undergraduates and 9- to 10-year-olds completed a speeded linear position estimation task. Bias in both groups’ estimates could
be explained in terms of a simple psychophysical model of proportion estimation. Moreover, some individual data were not
compatible with the requirements of the more complex Bayesian model.

Research highlights

• Much previous research finds systematic bias in
people’s estimates, commonly explained in terms of
complex Bayesian models.

• Children (aged 9–10) and adults produced biased
estimates in a spatial position task.

• Responses were accounted for by a simple psycho-
physical model of proportion estimation.

• Some individual data were not compatible with the
requirements of the more complex Bayesian model.

Introduction

In recent years, Bayesian models of cognition have
received considerable attention. Despite the appealing
qualities and contributions of Bayesian modeling meth-
ods, critics argue that these models are sometimes highly
flexible and complex (thus sacrificing predictive value),
with excessive ad hoc specification in response to the very
datasets they attempt to explain (e.g. Bowers & Davis,
2012; Friedman, Montello & Burte, 2012; Jones & Love,
2011; Marcus & Davis, 2013; but see Griffiths, Chater,
Norris & Pouget, 2012). With the current prevalence of
Bayesian accounts, traditional models of many phenom-

ena may be less frequently considered, even though they
sometimes provide a good or better account of behavior
(Bowers & Davis, 2012; Jones & Love, 2011; Mozer,
Pashler & Homaei, 2008). To the extent that Bayesian
models serve as computational-level descriptions of
behavior rather than models of cognitive processing, they
are not necessarily in competition with other accounts
(e.g. Griffiths et al., 2012). However, Bayesian models are
often presented as descriptions of cognitive processing.
Here, we present a family of phenomena that have been
explainedmost prominently in terms of relatively complex
Bayesian processes. We show that a simpler non-Bayesian
alternative can provide an excellent quantitative explana-
tion of these phenomena.

When we estimate, our estimates are often biased. This
is true across a wide variety of contexts. Whether adults
are asked to make estimates of the magnitude of a grey
square’s lightness or the magnitude of a schematic fish’s
width (Huttenlocher, Hedges & Vevea, 2000), the
position of a marked location within a circle (Huttenl-
ocher, Hedges & Duncan, 1991), or the position of a
number on a number line (Siegler & Opfer, 2003; Cohen
& Blanc-Goldhammer, 2011; Sullivan, Juhasz, Slattery &
Barth, 2011), systematic biases appear in their estimation
patterns. Developmental researchers working within
diverse theoretical frameworks have identified similar
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patterns in children completing estimation tasks (e.g.
Barth & Paladino, 2011; Duffy, Huttenlocher & Craw-
ford, 2006; Huttenlocher, Newcombe & Sandberg, 1994;
Siegler & Booth, 2004; Slusser, Santiago & Barth, 2013).
Here we focus on a simple family of estimation tasks in

the spatial domain. People exhibit systematic bias when
asked to reproduce a remembered location within a
bounded linear space, such as identifying a previously
observed position in a rectangular space or finding an
object buried in a long thin sandbox (Huttenlocher
et al., 1994). Huttenlocher and colleagues (1994) used
these tasks to demonstrate that even 1-year-olds can use
distance information to code location, contrary to
Piagetian theory. Their work also revealed suggestive
patterns of bias in spatial position estimates, with
characteristic developmental changes. Generally, adults’
and older children’s group estimates for locations within
each half of the rectangular space are displaced toward
the center of that half. In younger children, group
estimates are displaced toward the center of the entire
rectangular space. The degree of displacement varies in
different regions of the space (see Figure 1).
These and related performance patterns are commonly

explained in terms of a ‘Category Adjustment’ (CA)
model of spatial coding.1 The location is hierarchically
coded at two levels: an inexact but unbiased fine-grained
location and a spatial category associated with the
location (for example, a geometrically defined area
surrounding the location). Estimates result from a
Bayesian combination of the inexact fine-grained infor-
mation about a stimulus location and information about
the spatial category of which it is a member.2 Category-
level knowledge serves as prior information, combining
in a weighted fashion with inexact stimulus values. Bias
originates from the adjustment of estimates towards the
category prototype (usually the center of mass of the
spatial category). This model explains the data men-
tioned above as follows: adults and older children
subdivide the space into halves, with estimates displaced
toward the center of each half, while younger children’s
estimates are displaced toward the center of the entire
space because they haven’t yet begun to subdivide.
Multiple factors determine the degree of adjustment in
the CA model; the key point is that this adjustment
results in biased estimates. This is considered rational

because, although it introduces bias, it also reduces
estimation variability (Duffy et al., 2006; Huttenlocher
et al., 2000).
The Category Adjustment model comprises a broad

theory of the role of categories in cognition. It has been
invoked to explain results from a host of estimation
tasks, ranging from those involving geometric spatial
categories to those involving inductive categories, across
many domains in children and adults. These tasks
include remembering physical locations in the real world
(Holden, Newcombe & Shipley, 2013), recalling the
location of various points within a photograph (Holden,
Curby, Newcombe & Shipley, 2010), reporting the
location of a dot in a circle (Huttenlocher et al., 1991),
or reproducing the size of fish-shaped stimuli (Duffy
et al., 2006; Huttenlocher et al., 2000). For example,
when kindergarteners saw an image of a fish-shaped
stimulus and reproduced its size using a new adjustable
fish, responses showed bias broadly consistent with the
CA model (Duffy et al., 2006), purportedly showing that
children use category information to improve estimation
accuracy.
We suggest that conceptualizing these tasks differently

may lead to a simpler explanation. Many tasks thought
to provide evidence for the CA model could be concep-
tualized as proportion estimation tasks, in which partic-
ipants estimate the magnitude of some part, not just in

Figure 1 Locations in which toddlers searched for a toy
hidden in a long thin sandbox. Reprinted from Cognitive
Psychology, Vol 27, Huttenlocher J., Newcombe N., &
Sandberg E.H., The Coding of Spatial Location in Young
Children, Pages 115-147, Copyright (1994), with permission
from Elsevier.

1 For a review of the rich literature on a substantially different
approach, the dynamic field theory of spatial memory, see Spencer,
Austin and Schutte, 2012; Schutte, Spencer and Schoner, 2003.
2 For theoretically related work in the domain of temporal interval
reproduction, see Jazayeri and Shadlen, 2010; Cicchini, Arreghi,
Cecchetti, Giusti and Burr, 2012; Aagten-Murphy, Cappagli and Burr,
2013.
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isolation, but in relation to the whole. They require
estimation of particular stimulus values within a
bounded range, which may be thought of as estimates
of proportions of an explicitly or implicitly specified
whole value. For example, to remember the location of
an item in a long thin space with no landmarks, one must
encode not simply an absolute distance but rather a
distance relative to at least one reference point, such as
one end of the space. One could potentially encode not
simply an absolute distance, but rather the magnitude of
the part (distance from endpoint to target location) and
the magnitude of the whole (the distance between
endpoints). Absolute encoding of a distance from an
endpoint would be unhelpful if the position of the
observer or the space changed, whereas proportional
encoding (Huttenlocher, Newcombe & Vasilyeva, 1999)
would have the advantage of scaling across situations
and viewing distances (consistent with research on
children’s spatial scaling, e.g. Frick & Newcombe,
2012, and extent encoding, e.g. Duffy, Huttenlocher &
Levine, 2005).

It is widely acknowledged that estimates of propor-
tions and frequencies are biased such that smaller
proportions are overestimated and larger ones are
underestimated (for reviews, see Hollands & Dyre,
2000; Zhang & Maloney, 2012). This finding has been
reproduced in hundreds if not thousands of studies (e.g.
judging the proportion of black elements in an array of
black and white elements, Varey, Mellers & Birnbaum,
1990; judging the percentage of a letter in a mixed
sequence, Erlick, 1964; and judging the ratio of dura-
tions of short time intervals, Nakajima, 1987). Because
these patterns of bias in proportion estimation are
qualitatively similar to those arising from tasks used to
explore the CA model, and CA tasks can also be
conceptualized as proportion estimation tasks, it is
possible that theoretical explanations of proportion
estimation may be extended to tasks from the CA
literature.

Hollands and Dyre (2000) proposed a model based in
the psychophysical tradition that accounts for estimation
biases resulting from a wide variety of perceptually based
tasks, each of which involves explicit or implicit esti-
mates of proportion (the Cyclical Power Model of
proportion estimation or CPM, Hollands & Dyre,
2000). Bias in the estimation of positions within 2D
shapes (Huttenlocher et al., 1991) can be explained in
terms of such a model, as can many other examples of
bias in perceptual estimation (Hollands & Dyre, 2000).
This model has also been invoked recently as an
explanation of estimation bias for proportions specified
by symbols representing abstract quantities, as in the
case of number-line estimation (Barth & Paladino, 2011;

Cohen & Blanc-Goldhammer, 2011; Cohen & Sarnecka,
2014; Rouder & Geary, 2014; Slusser et al., 2013;
Sullivan et al., 2011), and it is qualitatively compatible
with a larger set of phenomena that remain to be tested
quantitatively.

This account is based on the idea that bias in
proportion estimation originates from bias involved in
the estimation of each part magnitude, as ‘psychological’
magnitude often does not equal true, physical magni-
tude. Spence (1990) showed that S-shaped and reverse
S-shaped patterns of bias in observers’ estimates of the
proportional sizes of various shapes on a graph could be
explained by a psychophysical model of proportion
estimation. The model is based on Stevens’ Law, which
describes the relationship between the estimated or
perceived magnitude of a stimulus and its actual mag-
nitude as a power function y = axb (the exponent b
quantifies bias associated with judgments of a particular
stimulus continuum,3 e.g. brightness or area, and a is a
scaling parameter). Estimates of proportions of magni-
tudes take the form of S-shaped or reverse S-shaped
curves (see Figure 2A), with the value of b determining
degree and direction of curvature (Spence, 1990). When
observers respond based on two bounding reference
points in their judgments of proportion, estimates are
predicted by y = xb/ (xb + (1 ! x)b). This model
(Figure 2A) would apply, for example, if an observer
estimated the liquid-filled proportion of a cylinder by
judging the liquid’s level relative to the entire height of
the cylinder. This simple model was later generalized
(Hollands & Dyre, 2000) to cases in which additional
reference points are used (e.g. estimating the filled
proportion of the cylinder by judging the liquid’s level
relative to half the height of the cylinder). Using
additional reference points in this manner produces
multiple S-shaped or reverse S-shaped cyclical estimation
patterns (Figure 2B). It also increases overall estimation
accuracy, even when values of b remain constant. Such
cycles are observed in children’s number-line estimates,
with developmental change arising in part from the
increasing use of additional reference points with age
(Barth & Paladino, 2011; Rouder & Geary, 2014; see
Slusser et al., 2013, for details). Cyclical patterns also
arise in proportion estimates using various perceptual
continua in adults (Hollands & Dyre, 2000), and closely
resemble the patterns of estimation bias arising in many
tasks from the CA literature (Figure 1).

Thus, estimation biases thought to support the CA
model are similar to those that have been explained in
terms of a proportion estimation model in different

3 See Teghtsoonian, 2012, for a recent overview.
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tasks. Although the linear position estimation tasks
described earlier can also be conceived as proportion
estimation tasks, the CPM has not been applied to these
tasks to date. Here we focus on these spatial estimation
tasks to ask whether this relatively simple non-Bayesian
model can explain the data. Because CA-based accounts
of estimation bias have been proposed for both adults
and children, we asked whether a proportion estimation
model could similarly explain performance in both
adults and children.
We examined estimation biases evoked by a spatial

position estimation task in adults and in children aged
9–10. Participants observed a horizontal line with a
vertical hatchmark, and made a speeded mouseclick to
reproduce that hatchmark’s location on a new unmarked
line in a novel position. We asked, for each group,
whether psychophysical models of proportion estimation
could explain the estimation data and provide a simpler
alternative to the more complex Bayesian Category
Adjustment Model.

Method

Participants

Participants were 46 children (recruited from a local
participant database) and 49 undergraduate students
(participating for pay or course credit). Twelve partici-
pants were excluded for being outside the target age
range, expressed developmental delay or concussion,

non-completion, computer error, or missed instruc-
tions. Of the participants contributing data, 20 were
9-year-olds (mean age 9;6), 20 were 10-year-olds (mean
age 10;4) and 43 were adults. Testing took place in a
quiet laboratory room.

Stimuli

Stimuli were created using MATLAB and displayed in a
pseudorandom order for each participant. For each trial,
a centered fixation rectangle (grey, 12.3 cm 9 0.7 cm)
was immediately followed by a stimulus screen and a
response screen. Fixation rectangles and stimulus screens
each lasted 500 ms for adults and 750 ms for children.
Response screens were displayed for 1500 ms for adults
and 2250 ms for children. The stimulus screen displayed
a centered 12.3 cm horizontal line with unlabeled ‘end-
points’ (short vertical lines at each end extending 0.3 cm
above and below the line) and a vertical hatch mark at a
target position. The spatial response screen presented a
non-centered pseudorandomly located line of identical
size and orientation, with no hatch mark. For the
purposes of assigning target positions, the endpoints of
the line were assigned values of 0 and 1000 (these labels
were not presented to the participants). Target values to
be estimated were sampled at intervals of approximately
50 units (a uniform distribution), with the exact pre-
sented values jittered slightly (e.g. positions correspond-
ing to ‘47’ and ‘51’ were presented rather than two
instances of ‘50’). Target positions used were those
corresponding to the numbers 47, 51, 98, 102, 147, 153,
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Figure 2 Overview of proportion estimation model, showing predicted estimation patterns for three possible values of b.
Figures 2A and B depict one- and two-cycle versions of the model (the two-cycle version depicts predicted estimation pattern for
observers who use a middle reference point). These plots show example values of b ≤ 1; an inverse pattern of over- and
underestimation results if b > 1.
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199, 202, 249, 252, 298, 302, 349, 351, 398, 403, 449, 453,
499, 502, 547, 552, 597, 601, 647, 652, 699, 703, 747, 753,
798, 802, 848, 853, 899, 901, 949, and 953.

Design

Participants completed the spatial estimation task and a
number-line estimation task. Participants completed two
number-line (N) trial blocks and two spatial estimation
(S) trial blocks. Adults completed 38 trials/block (each
target value represented twice) in NSSN or SNNS order.
Children completed 19 trials/block (each target value
represented once), with blocks in NNSS or SSNN order
to reduce the number of potentially confusing task
switches. The number-line task was part of a separate
study and will not be discussed further here.

Procedure

Participants were seated in front of a computer with
blank paper covering the keyboard and top of the screen
to obscure potential landmarks. Adults were given
written and spoken instructions for the first block;
children received spoken instructions and examples on
paper. Four practice trials (for children) or two practice
trials (for adults) preceded the first block. For each trial,
the participant’s task was to move the cursor and click
the appropriate position (the position that matched the
previously presented spatial location) on the blank
horizontal line during the response screen. Mouseclicks
were recorded as numbers from 0 to 1000, corresponding
to locations along the response line. A 1000 ms pause
separated trials for adults and a 1500 ms pause sepa-
rated trials for children. For children, the experimenter
also had the option to pause the game in case of
distraction.

Results and discussion

Participants’ estimates were compared to the actual
locations corresponding to the target spatial positions.
All individuals produced estimates correlated with the
target positions in each block, showing that they
understood the instructions and were motivated to
complete the task. An individual’s estimate for a target
value was removed as an outlier if it differed from the
group mean for that target value by more than 2 SDs
(3.72% of trials for children, 3.10% of trials for adults).
The median estimates of the 9- and 10-year-olds did not
differ, t(74) = !0.04, p > .05; for further analyses, the
two age groups were combined into one group of
children. Percent absolute error (PAE) was calculated

as a general measure of accuracy (see Booth & Siegler,
2006, 2008; Slusser et al., 2013). Though both groups
were extremely accurate (adults: PAE = 2.5%; children:
PAE = 3.0%), systematic estimation biases did arise.

Figure 3 depicts the median estimates of the adults
and the children. Data were fitted with psychophysical
models of proportion estimation (Hollands & Dyre,
2000; Slusser et al., 2013; Spence, 1990). These models
(see Figures 2A, 2B) account for cyclical over- and
under-estimation patterns such as those seen in the
present data. Their one free parameter, b, corresponds to
the exponent in Stevens’ Power Law; this parameter
gives the degree and direction of bias (how the lines
curve away from the X-axis in Figure 2), with values
over 1 corresponding to estimates being shifted right-
ward on the left half of the line and leftward on the right
half and values under 1 corresponding to the opposite
pattern. Single-cycle (Figure 2A) or multiple-cycle (Fig-
ure 2B) versions of the model account for cases in which
participants judge quantities as proportions of a single
whole vs. cases in which participants use additional
reference points.

We fitted one- and two-cycle versions of the model and
found that the two-cycle version provided the better
explanation of the data for both groups (see Figure 3),
yielding lower AICc scores (for adults, D AICc = 15.95;
for children, D AICc = 17.38).4 The resulting value of b
was between 0 and 1 for both groups, showing that the
direction of bias was the same (on average) for both. The
degree of bias was also nearly identical for both groups
(adults: b = 0.8130, R2 = 0.9964; children: b = 0.8174,
R2 = 0.9965). At the individual level, the two-cycle
version of the model was preferred for 29/43 adults and
33/40 children (Table 1). These findings suggest that for
the majority of participants and trials, estimates were
made relative to both endpoints plus an inferred
midpoint, rather than relative to the two endpoints
alone.

4 Akaike Information Criterion, adjusted for small sample sizes,
provides a measure of how well different models can explain data
while taking differing numbers of parameters into account (Burnham,
Anderson & Huyvaert, 2011; Burnham & Anderson, 2002). D AICc
refers to the difference in AICc values between another model and the
preferred model, which has the lowest score. Burnham and Anderson
(2002) proposed the following interpretation guidelines: ‘As a rough
rule of thumb, models having a D within 1–2 of the [preferred] model
have substantial support and should receive considerations in making
inferences. Models having D within about 4–7 of the [preferred] model
have considerably less support, while models with D > 10 have either
essentially no support and might be omitted from further consideration
or at least fail to explain some substantial structural variation in the
data’ (p. 446).
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The fits of the two-cycle proportional models to the
estimation data shown in Figure 3 are good, and these
models clearly capture some systematic qualities of these
data that cannot be explained by a simple linear fit.
However, the high R2 values for these fits are partly due
to the linear increase of the estimated position with the
target position. To explain systematic deviations from
this linear increase, it is necessary to look at bias in the
data by subtracting the target values from their corre-
sponding estimates; when models are fit to data pre-
sented in this form, lower R2 values typically result. The
resulting bias plots are shown in Figure 4 (left column),
fit by the same pure two-cycle models seen in Figure 3. It
is apparent that the two-cycle models cannot account for
some asymmetries in participants’ median estimation
bias: the model underpredicts bias in some regions of the

line and overpredicts in others (R2 = 0.4878 for adults;
R2 = 0.4997 for children).
To account for similar asymmetries observed previ-

ously, some researchers have proposed a mixed model: a
weighted combination of the one-cycle and two-cycle
versions of the CPM depicted in Figures 2A and 2B
(Hollands & Dyre, 2000, see Equation 9). The theoretical
motivation for introducing such a mixed model is clear:
the pure one-cycle model is expected to fit the data when
estimates are made relative to two reference points. The
pure two-cycle model is expected when estimates are
made relative to those two reference points plus a
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Figure 3 Median spatial position estimates of adults (top) and
9- and 10-year-old children (bottom). The solid line represents
the preferred model. The dashed line shows y = x. Note: No
numerals were presented to participants during the spatial task;
numerals are shown here to facilitate graph reading.

Table 1 Children’s and adults’ preferred models: 1-cycle
versus 2-cycle

Children Adults

Preferred model ∆ AICc Preferred model ∆ AICc

2-cycle 8.90 2-cycle 10.99
2-cycle 9.08 2-cycle 13.15
2-cycle 8.11 2-cycle 20.23
2-cycle 15.66 2-cycle 31.07
1-cycle 20.97 2-cycle 28.69
2-cycle 8.56 2-cycle 9.94
2-cycle 10.27 1-cycle 9.55
2-cycle 0.49 2-cycle 27.21
1-cycle 0.41 2-cycle 5.98
2-cycle 14.30 2-cycle 9.89
2-cycle 14.13 2-cycle 3.93
1-cycle 1.36 2-cycle 7.34
2-cycle 12.47 1-cycle 4.53
2-cycle 10.94 2-cycle 18.23
2-cycle 6.70 2-cycle 6.23
2-cycle 1.81 1-cycle 7.25
1-cycle 4.97 1-cycle 21.07
2-cycle 7.91 2-cycle 8.26
1-cycle 4.37 2-cycle 26.81
2-cycle 17.65 2-cycle 9.79
2-cycle 7.63 1-cycle 4.63
2-cycle 16.70 2-cycle 2.00
1-cycle 12.95 2-cycle 2.73
2-cycle 3.76 1-cycle 0.19
2-cycle 15.11 2-cycle 11.40
2-cycle 2.95 1-cycle 9.29
2-cycle 17.66 2-cycle 35.58
2-cycle 4.48 2-cycle 6.89
2-cycle 7.40 2-cycle 1.28
2-cycle 3.26 2-cycle 21.86
2-cycle 2.58 2-cycle 4.62
2-cycle 8.07 1-cycle 5.45
2-cycle 0.73 1-cycle 0.95
2-cycle 4.14 2-cycle 14.62
2-cycle 2.34 2-cycle 25.68
2-cycle 2.77 2-cycle 10.15
1-cycle 3.42 2-cycle 8.66
2-cycle 10.19 1-cycle 7.29
2-cycle 8.84 1-cycle 0.77
2-cycle 4.51 1-cycle 3.76

1-cycle 4.50
2-cycle 6.03
1-cycle 4.99
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midpoint. But all participants need not use the same
reference point strategy, and individuals need not use the
same strategy on every trial. In the likely event that
multiple strategies contribute to participants’ estimates,
the mixed model is needed.

We applied the mixed model to the estimation bias
data and compared it to the pure two-cycle model. The
pure model requires only one parameter (b). The mixed
model includes separate values of b for each component
(b1 for the one-cycle component; b2 for the two-cycle
component) and a weighting parameter that determines
the relative contributions of the two components (taking
values between 0 and 1; a higher value represents a larger
contribution from the one-cycle component). The result-
ing improved fits are shown in Figure 4 (right column)
for adults (R2 = 0.9282) and children (R2 = 0.9113), and
resulting parameter values are consistent with those
reported by Hollands and Dyre (2000). AICc scores
support the mixed model as a markedly better explana-
tion of the bias data than the pure model for both age
groups (for adults, D AICc = 69.75; for children, D AICc
= 60.86), and the mixed model provided a better
explanation than the individual’s best pure model
(1-cycle or 2-cycle) for 34/43 adults and 28/40 children
(Table 2).

Thus, the Cyclical Power Model (CPM) can provide a
strong explanation of data that have previously been
explained in terms of the Bayesian combination of
multiple information sources described by the Category
Adjustment model. The non-Bayesian CPM is appealing

in part because it is simpler (requiring fewer parameters,
for example) than the CA model.

Moreover, the CA model’s predictions appear incon-
sistent with our data at the individual level. The CA
model predicts that estimates should generally be
adjusted toward the prototypical center of a spatial
category, with the degree and direction of adjustment
varying with the number of categories into which the
observer subdivides the space. For example, some
observers may treat the space in question as a single
category, in which case estimates should generally be
adjusted toward the center of the entire space (the
prototypical center of the single spatial category).
Alternatively, other observers may subdivide the space
into two parts (using two spatial categories), in which
case estimates within each category should generally be
adjusted toward the center of that category. In this latter
case of subdivision into two spatial categories, about half
the estimates will (coincidentally) be displaced toward
the overall center, and about half will (coincidentally) be
displaced away from the overall center.

However, for many individuals in our study, most
estimates are displaced away from the overall center of
the line (at least 75% of estimates for 19/43 adults and 6/
40 children; and in a few cases, nearly all estimates: see
Figure 5). This is not predicted by the CA model
whether a participant treats the space as a single category
or subdivides it into two. The CPM, on the other hand,
can accommodate these results through individual
differences in the values of the model’s parameters and
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Figure 4 Estimation bias in adults (top) and children (bottom). Positive values indicate estimates shifted to the right of the target
value on the response line; negative values are shifted to the left. The left column depicts fits of the pure 2-cycle proportion
estimation model, which was preferred to the 1-cycle; the right column depicts fits of the mixed model (weighted combination of the
pure 1- and 2-cycle models), which was preferred to the pure 2-cycle.
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strategic choices of reference points. Though further
work is needed to explore this point, we do not believe
the CA model can account for this result (see also
Crawford, Landy & Presson, 2014, for prior findings of
bias away from category centers that are inconsistent
with the CA model’s posited bias towards prototype
values; see also the dynamic field theory, e.g. Spencer
et al., 2012).

Conclusions

This work provides clear evidence that a relatively simple
psychophysical model of estimation bias (the Cyclical
Power Model) offers an excellent alternative explanation
of adults’ and children’s performance in one domain of
cognition in which complex Bayesian models are fre-
quently invoked. The estimation biases that arise in these
types of tasks therefore don’t necessarily provide evi-
dence of Bayesian cue combination. The CPM has
theoretical links to prior work in perceptual psychology,
and it has previously been shown to provide a good
explanation of a wide variety of phenomena; the present
work shows that children’s and adults’ spatial position
estimation is among these. Further, this work provides
preliminary evidence that the Category Adjustment
model may be incompatible with individual performance
patterns (for a prior case in which group data appeared
to support a Bayesian account while individual data did
not, see Mozer et al., 2008). The CPM also has
limitations: for example, in the form presented here it
does not speak to the well-established effects of delay
time on estimation bias (e.g. Crawford et al., 2014; Hund
& Plumert, 2002). Nonetheless, this work highlights the
broader need to consider non-Bayesian models of
cognition in domains that are populated largely by
Bayesian models.
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