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Evidence from human cognitive neuroscience, animal neurophysiology, and behavioral
research demonstrates that human adults, infants, and children share a common nonverbal
quantity processing system with nonhuman animals. This system appears to represent both
discrete and continuous quantity, but the proper characterization of the relationship
between judgments of discrete and continuous quantity remains controversial. Some
researchers have suggested that both continuous and discrete quantity may be automati-
cally extracted from a scene and represented internally, and that competition between these
representations leads to Stroop interference. Here, four experiments provide evidence for a
different explanation of adults’ performance on the types of tasks that have been said to
demonstrate Stroop interference between representations of discrete and continuous quan-
tity. Our well-established tendency to underestimate individual two-dimensional areas can
provide an alternative explanation (introduced here as the “illusory-Stroop” hypothesis).
Though these experiments were constructed like Stroop tasks, and they produce patterns
of performance that initially appear consistent with Stroop interference, Stroop interference
effects are not involved. Implications for models of the construction of cumulative area rep-
resentations and for theories of discrete and continuous quantity processing in large sets are

discussed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

There is now a large body of evidence from human cog-
nitive neuroscience, animal neurophysiology, and behav-
ioral research demonstrating that humans of all ages and
nonhuman animals share a common ability to represent
approximate numerical magnitudes (e.g. Brannon, 2006;
Dehaene, 1997; Gallistel & Gelman, 2000; Nieder, 2005).
This is striking in part because numerical magnitude is a
relatively abstract property of a set: it cannot be deter-
mined by assessing a single perceptual property of a
stimulus. For example, 20 plums will take up much more
space than 40 grapes, so 40 grapes cannot be judged as
“more” based on a perceptual property such as total
amount of visible purple surface area. Evidence for the pro-
cessing of numerical (discrete) quantity is evidence for a
kind of abstract thought: in carefully controlled experi-
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ments, response based on number requires the subject to
ignore salient perceptual properties of the stimuli at hand.
Many nonhuman species can make discriminations based
on discrete quantity, as can very young children and adults
even when they are prevented from exact counting (e.g.
Barth, Kanwisher, & Spelke, 2003; Barth, La Mont, Lipton,
& Spelke, 2005; Cantlon & Brannon, 2006; Hauser, Tsao,
Garcia, & Spelke, 2003; Meck & Church, 1983).

This ability appears to arise from what is often referred
to as an “analog magnitude representation” system: the
discrete numerosity of the set is internally coded by a men-
tal magnitude, which may be pictured as a number line or
a vessel filled with liquid. Ratio-dependent discrimination
in accord with Weber’s Law is a primary signature of this
analog magnitude system: discriminability depends on
the ratio of the quantities to be compared (e.g. Dehaene,
1997; Gallistel & Gelman, 1992; Gallistel & Gelman,
2000). Of course, we can also make perceptual judgments
about non-numerical quantities such as duration, length,
area, or volume. Converging evidence suggests that the
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analog magnitude system may be involved in the represen-
tation of many continuous quantities as well as number
(e.g. Balci & Gallistel, 2006; Walsh, 2003; vanMarle &
Wynn, 2006; Brannon, Lutz, & Cordes, 2006; Meck &
Church, 1983; for a recent review, see Feigenson (2007)).

The relation between continuous and discrete quantity
processing can be difficult to characterize: numerical quan-
tity is correlated with various forms of continuous quantity,
and these cannot be independently varied. Attempts to
identify the specific quantities that control human and ani-
mal behavior under a variety of experimental conditions
have led to controversy, particularly with respect to studies
of infants and young children, which often involve neither
extensive training nor explicit instruction. For example, un-
der some conditions, infants appear sensitive to changes in
numerical quantity (Brannon, Abbott, & Lutz, 2004; Lipton &
Spelke, 2003; Xu & Spelke, 2000). In other cases they appear
oddly insensitive to numerical changes that should be
equally discriminable, instead responding to changes in
continuous quantity (Clearfield & Mix, 1999; Feigenson,
Carey, & Hauser, 2002; Feigenson, Carey, & Spelke, 2002).

These and many other findings have led to a wide vari-
ety of proposals describing the kinds of basic, unlearned
abilities that might underlie nonverbal quantitative pro-
cessing. Some researchers suggest that claims about the
detection of discrete quantity in very young children are
unfounded, as the critical results may be explained in
terms of sensitivity to continuous amount. These research-
ers suggest instead that sensitivity to numerical quantity is
relatively late-developing and probably dependent upon
language (Mix, Huttenlocher, & Levine, 2002; Newcombe,
2002). Others have appealed to multiple distinct core
knowledge capacities in order to explain the wide range
of findings with infants, adults, and nonhuman animals
(Carey, 2004; Carey & Sarnecka, 2006; Feigenson, Dehaene,
& Spelke, 2004; Hauser & Spelke, 2004; Xu, 2003). Still oth-
ers have suggested that the attentional demands of a par-
ticular experimental situation might determine the
quantitative dimension that governs behavior in that situ-
ation (Cordes & Gelman, 2005; Hurewitz, Gelman, &
Schnitzer, 2006). The last suggestion found empirical sup-
port in a series of recent behavioral studies in adults. The
authors proposed specifically that Stroop interference be-
tween analog magnitude representations of continuous
and discrete quantity might explain some of the apparent
discrepancies in the nonverbal quantity processing litera-
ture (Hurewitz et al.,, 2006). According to the authors’
hypothesis, we might automatically extract and represent
both discrete and continuous quantities from a scene,
and these representations might then compete for control
of behavior. The attentional demands of particular study
conditions could easily bias the competition in favor of dis-
crete or continuous quantity, producing different results
depending on the paradigm and stimuli in question. These
researchers argue that adults do appear susceptible to
competition between continuous and discrete dimensions
of quantity, based on the observation of performance pat-
terns consistent with Stroop interference during quantity
judgments (Hurewitz et al., 2006).

These claims of Stroop interference arise from studies in
which adult participants were presented with pairs of ar-

rays containing up to seven filled circles, and were asked
to make judgments of either total continuous surface area
or discrete number (Hurewitz et al., 2006). The irrelevant
dimension in each task could provide information helpful
to the task (congruent trials), harmful to the task (incon-
gruent trials), or neutral to the task (neutral trials). Often,
performance costs for incongruent trials in Stroop para-
digms such as these are interpreted to mean that the ob-
server is obligated to process the irrelevant dimension in
the task: the automatically-extracted irrelevant informa-
tion cannot be ignored, and so it interferes with judgments
about the relevant dimension. For example, many studies
have demonstrated that the physical size of an Arabic nu-
meral interferes with judgments of its numerical magni-
tude (Besner & Coltheart, 1979) and vice versa (Henik &
Tzelgov, 1982). In Hurewitz et al.’s study, participants
could perform both the continuous and discrete tasks
accurately and rapidly, and in both cases error rate and
reaction time were higher for incongruent than congruent
trials. The authors concluded that discrete quantity infor-
mation interfered with continuous quantity judgments
and vice versa, that competition between representations
was responsible, and that adults seem to rapidly and auto-
matically extract both discrete number and total continu-
ous amount when confronted with a set (Hurewitz et al.,
2006).

The present paper considers an alternative explanation
for experimental results that appear to indicate Stroop
interference in quantity judgments involving sets of objects,
focusing on judgments of cumulative area. At least one
potentially unwarranted - and consequential - assumption
is built into the adult experiments that are said to demon-
strate these Stroop interference effects (see Algom, Dekel,
& Pansky, 1996, for a related discussion). To understand this
assumption, first consider a hypothetical cumulative area
judgment task, in which participants are presented with
two sets of disks and instructed to choose the set with the
larger cumulative area. The researcher manipulates the ratio
of the cumulative areas such that some comparisons are
easy (for example, the ratio of cumulative areas across the
two sets might be 1:2) and others are more difficult (for
example, the cumulative area ratio might be 7:8). The re-
searcher also manipulates congruency by creating two dif-
ferent types of trials. Trials in which the set with the
larger cumulative area has a smaller number of disks are
classified as “incongruent,” while “congruent” trials are
those in which the set with the larger cumulative area also
has a larger number of disks. Performance is likely to be
worse for more difficult comparisons in general (those
involving ratios closer to 1:1), but suppose there is also an
apparent effect of congruency in addition to the ratio effect:
performance is worse for the incongruent trials than for the
congruent trials. Such congruent vs. incongruent trial differ-
ences have previously been explained in terms of Stroop
interference between automatically-extracted representa-
tions of cumulative area and number (Hurewitz et al.,
2006). The presence of a true congruency effect, dissociable
from any effect of ratio, is the critical evidence for Stroop
interference.

The hidden assumption in the Stroop interference
explanation lies in the idea that performance should be as-
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sessed relative to the ratio of veridical cumulative areas
across the two sets. This assumption is only valid if we
make additional assumptions about the mechanisms
underlying cumulative area judgments in these tasks: that
participants either (a) estimate cumulative area without
first arriving at an estimate of individual item size (for
example, through some direct perceptual summation of
all of the appropriately-colored pixels in the set) or (b)
compute cumulative area by first estimating individual
item size very accurately, with no systematic bias (for
example, through the summation of accurate estimates of
individual disk areas, or by performing some computation
over accurate estimates of individual disk area and total
number of disks). These assumptions are problematic for
two reasons. First, we have no compelling reason to as-
sume that direct extraction of cumulative area (with no re-
gard for object boundaries) must be possible. Second,
humans are actually rather poor at the estimation of indi-
vidual two-dimensional areas. Previous psychophysical re-
search on judgments of individual circles’ areas shows that
we tend to underestimate circles’ areas considerably: sub-
jective area increases more slowly than physical area (in
other words, the Stevens exponent for the area of a circle
is not 1.0; it is often measured at about 0.8, with individual
variation, e.g. Chong & Treisman, 2003; Teghtsoonian,
1965).

How could participants’ underestimation of individual
disk areas affect experimenters’ inferences about the cog-
nitive processes underlying these tasks? Patterns of bias
in estimates of individual area are relevant here because,
if we do judge cumulative area by making use of estimates
of individual element areas (or estimates of average ele-
ment size; Chong & Treisman, 2003; Chong & Treisman,
2005), then performance differences for congruent vs.
incongruent trials may not reflect true effects of congru-
ency (which in turn are necessary to provide evidence of
Stroop interference). This is because bias in estimates of
individual areas should produce systematic differences in
performance on congruent and incongruent trials: the
cumulative subjective area ratios associated with incongru-
ent trials should be more difficult (closer to 1:1) than those
associated with congruent trials, even in an experiment de-
signed to equate cumulative veridical area ratios across
trial types (see Fig. 1 for an example). Performance should
suffer on incongruent trials, but not because they are
incongruent. Rather this performance cost would be prop-
erly attributed to an effect of ratio (discrimination diffi-
culty), and it would not be accurate to interpret the cost
as evidence of Stroop interference. The incongruent trial
cost observed in previous studies may therefore be mis-
leading: there may be no evidence for the existence of
competition and interference between automatically-ex-
tracted representations of number and cumulative area.
Though the task appears to be a Stroop task in its design
and in its effects, the apparent Stroop interference effects
found previously could be illusory: there may be no differ-
ence in the cognitive processing of congruent and incon-
gruent trials.

The aim of the present study was to distinguish be-
tween these two accounts of adults’ quantity judgments:
the interference hypothesis (Hurewitz et al., 2006) and

Hypothetical incongruent trial:
Set 1 has larger cumulative area, smaller number

Set 1 Set 2 @
® (=

Cumulative veridical area ratio, Set 1:Set 2 = 1.67
Estimate of cumulative subjective area ratio = 1.5
Cumulative diameter ratio = 1

Hypothetical congruent trial:
Set 1 has larger cumulative area, larger number

Set 1 @ Set 2
(o)

(5| @

Cumulative veridical area ratio, Set 1:Set 2 = 1.67
Estimate of cumulative subjective area ratio = 1.65
Cumulative diameter ratio = 1.5

Fig. 1. Schematic depiction of hypothetical congruent and incongruent
trial types (not actual stimuli). Even though veridical cumulative area
ratios are equated across the two trial types, the ratio of subjective areas
is much closer to 1:1 for the incongruent trial (where “subjective area” is
a power function of veridical disk area with an exponent of 0.8), and the
ratio of cumulative diameter is 1:1 for the incongruent trial (where
cumulative diameter is equal to the sum of the individual diameters). If
participants do not have access to veridical estimates of area, incongruent
trials are likely to be associated with more difficult discriminations (with
ratios closer to 1:1) than congruent trials, potentially producing incon-
gruent trial performance costs that are not direct results of trial
incongruency.

the alternative “illusory-Stroop” hypothesis described
above. The interference hypothesis states that continuous
and discrete quantity information are both automatically
extracted from visually-presented sets, such that their
representations compete for control of participants’
behavior, causing interference on incongruent trials. The
illusory-Stroop hypothesis states that our well-established
tendency to underestimate individual areas can explain
performance costs observed for incongruent trials (because
incongruent trials are simply associated with more difficult
subjective area ratios), and so incongruent trial costs do
not necessarily constitute evidence of Stroop interference.

Four experiments were conducted to test the predic-
tions of these competing hypotheses. In the first three
experiments, adult participants were shown two sets of
filled circles on a computer screen and asked to make a
judgment about the set with the larger total continuous
amount (cumulative area), under a variety of experimental
conditions. In the fourth experiment, participants judged
discrete number rather than continuous amount, with
the same stimuli presented in the third experiment. In all
experiments, eight different models of individual partici-
pants’ performance were explored in an attempt to estab-
lish, first, the content of the quantitative representation
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controlling behavior in these tasks and, second, the pres-
ence or absence of a clear interdimensional Stroop interfer-
ence effect. The results show that the illusory-Stroop
hypothesis can better account for the data: there is no evi-
dence of Stroop interference between competing represen-
tations of discrete and continuous quantity in these
experiments.

2. Experiment 1: continuous quantity, homogeneous
sets, implicit instructions

Adult participants saw two rapidly presented sequen-
tial sets of filled circles on a computer screen and were in-
structed to choose one of the two sets. In this experiment,
the instructions to maximize total cumulative area were
implicit, and all of the circles in a set were the same size.
Participants were given instructions suggesting that total
continuous amount (cumulative area) should be maxi-
mized (“The circles on the screen represent food; choose
which set you would want if you were hungry.”) Post-tests
were used to discount data from participants whose re-
sponses suggested intentional judgments based on criteria
other than cumulative area.

2.1. Methods

2.1.1. Participants

Thirty-four adults participated for pay or for credit in
the Harvard University Psychology Department Study Pool.
All had normal or corrected-to-normal vision. All experi-
mental procedures were approved by an Institutional Re-
view Board and informed consent was obtained from all
participants.

2.1.2. Materials

Stimuli were presented on a PowerMac G4 computer
with a ViewSonic GS790 color monitor set at 1024 by
768 pixels resolution. For each trial, one array of red disks
appeared on the screen and remained for 400 ms, followed
by a blank screen for 400 ms and a second array for
400 ms. Disk size was always the same within an array,
but disk size and number always varied between arrays.
Disks were positioned in a pseudorandom arrangement
without touching or overlapping. Array numerosities ran-
ged from 9 to 32, and disk diameters ranged from 10 to
20 pixel-widths such that the largest possible area of a disk
was four times the smallest possible area. For half of these
trials, the set with the larger number had the larger total
cumulative disk area (congruent trials); for the other half,
the set with the larger number had the smaller total cumu-
lative area (incongruent trials). Congruent and incongruent
trials in these studies are always defined with respect to
the congruency of number and physical/veridical cumula-
tive areas. The two trial types were interleaved. There were
eight possible set 1:set 2 numerosity ratios (four congruent
and four incongruent, collapsed across set 2:set 1 and set
1:set 2) and eight ratios describing the total cumulative
areas of set 1:set 2 (four congruent and four incongruent).
Ratios were matched as closely as possible for congruent
vs. incongruent trials. Number and cumulative area ratios
were necessarily different within each individual trial,

but across the entire set of trials, they were closely
matched. Congruent trial numerosity ratios (collapsed
across set 1:set 2) were approximately 0.38, 0.58, 0.75,
and 0.78, and congruent trial cumulative area ratios were
approximately 0.38, 0.56, 0.74, and 0.8. Incongruent trial
numerosity ratios (collapsed across set 1:set 2) were
approximately 0.38, 0.64, 0.67, and 0.78, and incongruent
trial cumulative area ratios were approximately 0.38,
0.63, 0.67, and 0.76.

2.1.3. Procedure

Participants were seated approximately 0.75 m from
the monitor; viewing distance was not controlled. They
were told that the red items represented food, and that
they should choose the set that they would want if they
were hungry. They received no explicit instructions as to
the basis for choosing one group over the other - the pur-
pose was to determine which cues would be the default
bases for choice, when the task implicitly suggested that
total continuous amount should be maximized. Partici-
pants were asked not to consider their choices carefully,
but to choose rapidly based on first impressions. After
viewing each trial, participants made a two-alternative
forced-choice (2AFC) judgment about the presented pair
of sets, pressing a left-hand key to choose the first set
and a right-hand key to choose the second. After complet-
ing six blocks of 96 trials each (576 trials total), partici-
pants were questioned about their goals during the tasks
and any strategies they thought they had used to accom-
plish those goals. The task was intended to lead partici-
pants to attempt to maximize continuous amount (in this
case, cumulative area of all disks), but the vague instruc-
tions might have been interpreted very differently by dif-
ferent participants. Post-tests were used to discount all
data from participants whose responses suggested inten-
tional judgments based on numerosity, individual item
size, or any criteria other than total continuous amount.
Twenty out of 34 participants stated unambiguously that
they had attempted to maximize continuous amount;
these participants often described strategies such as
“choosing the one with the most red.” Eleven of 34 partic-
ipants described other goals based on quantities of some
kind: some explicitly chose based on the set with the larger
number of items, and some described choosing based on
some combination of number and size, but did not explic-
itly mention maximizing total amount. Three additional
participants described different non-quantitative strate-
gies. Data from the latter two groups were excluded from
the analysis.

2.2. Results and discussion

Both the interference hypothesis and the illusory-
Stroop hypothesis predict that participants should respond
less accurately on the incongruent trials, and this was the
case (consistent with previous data, Hurewitz et al.,
2006). These competing hypotheses have different expla-
nations of the source of this performance cost, however,
which in turn lead to specific and testable predictions as
follows. The interference hypothesis holds that the incon-
gruent trial cost arises from competition between repre-
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sentations of continuous quantity and discrete number:
that this cost represents a true effect of congruency, disso-
ciable from any effects of ratio (discrimination difficulty).
The interference hypothesis predicts, therefore, that differ-
ences between congruent and incongruent trials should
endure even when we assess performance with respect
to cumulative subjective area (when we take into account
the possibility that participants underestimated individual
element area). There should be separable effects of ratio
and congruency, so performance will not be determined
by the difficulty of the discrimination alone: two separate
curves should be required to describe participants’ perfor-
mance on congruent vs. incongruent trials.

The illusory-Stroop hypothesis, on the other hand,
explicitly states that this interference-based interpretation
of the incongruent trial cost results from the problematic
assumption that participants make judgments of cumula-
tive area based on veridical, rather than underestimated,
estimates of individual area. It also states that when indi-
vidual area underestimation is taken into account, the dif-
ferences between congruent and incongruent trials will be
attributable to ratio effects. Therefore the illusory-Stroop
hypothesis predicts that the apparent congruency effects
should disappear when we assess performance with
respect to cumulative subjective area, in accord with previ-
ous research on the assessment of the areas of two-dimen-
sional shapes. There should be no true effect of congruency
dissociable from effects of ratio, so a single curve should be
able to describe performance on both congruent and
incongruent trial types: performance should determined
by the difficulty of the discrimination alone.

In order to test these predictions quantitatively, indi-
vidual performance was assessed with respect to eight
possible models of cumulative area judgment. There were
four main categories of models (see Appendix) each with
two subtypes (“pooled” and “unpooled” fits - see below).
One of the four model categories (AREA) assumes that
participants make judgments based on veridical cumulative
area (corresponding to assumptions made in previous
studies; Hurewitz et al., 2006). Another (POW) assumes that
participants tend to underestimate area, such that each cir-
cle’s subjective area is a power function of its physical area
with a Stevens exponent of 0.8, comparable to measure-
ments from previous studies (e.g. Chong & Treisman,
2003; Teghtsoonian, 1965). A third model (DIAM) assumes
that participants simply use disk diameter as a rough esti-
mate of area, which does occur under some conditions
(e.g.Krider, Raghubir, & Krishna, 2001), in effect maximizing
cumulative diameter.! A fourth type of model was also con-
sidered (NUM), which assumes that participants simply
chose based on the total number of disks in each set.

Fig. 2A depicts the group data plotted with respect to
these four potential models of performance; however, the

T These models do not necessarily identify the mechanisms that might
create these quantity estimates. For example, a participant whose data
support the DIAM model could be (unconsciously) summating the diam-
eters of all of the disks, or performing a computation over the diameter of a
single disk and the total number of disks in the set. The model simply says
that an estimate equivalent to cumulative diameter is the quantity upon
which the choice is based.

group data were highly variable and the analyses to follow
focus on individual participants’ data. Note that the incon-
gruent and congruent trials are fairly well matched for dif-
ficulty with regard to veridical area ratios: in the AREA
plot, in which cumulative veridical area ratios are shown
on the x-axis (leftmost panel of Fig. 2A), the congruent
and incongruent trials are located at roughly equal x-val-
ues. This difficulty-matching across trial types breaks
down when performance is assessed with respect to mod-
els that account for individual area underestimation, as in
the POW and DIAM plots (in which cumulative subjective
areas or cumulative diameters, respectively, are shown
on the x-axis): the incongruent trials now appear shifted
toward the center of the x-axis relative to the congruent
trials. According to the illusory-Stroop hypothesis, this ra-
tio-based difference in trial difficulty is the cause of the
incongruent trial cost: the incongruent trial cost reflects
an effect of ratio, not a true effect of congruency.

Within each one of the four main model types, two sub-
types were also tested. The first was a single-curve model
in which data from congruent and incongruent trials were
pooled (one curve was fit to each participant’s data, regard-
less of trial type). The second was a two-curve model in
which data from congruent and incongruent trials were
unpooled (two separate curves were fit to each partici-
pant’s data - one for congruent and one for incongruent
trials). The critical predictions for the results of these anal-
yses are as follows. If interference does indeed produce the
performance costs for incongruent trials, as predicted by
the interference hypothesis, then the two-curve models
of performance should receive more empirical support
than the single-curve models. This is because the interfer-
ence hypothesis predicts that there should be a true effect
of congruency, separable from the effect of discrimination
ratio, even if alternative models that account for individual
area underestimation are considered. If there is no clear
evidence of interference, as predicted by the illusory-
Stroop hypothesis, however, a single curve should be
sufficient to fit data from both trial types, and the one-
curve model should receive more support from the data.
This is because the illusory-Stroop hypothesis predicts
that ratio effects alone - not congruency - will explain
the observed performance patterns, if we consider the
possibility that single element areas are likely to be
underestimated.

For each of the eight models considered (AREA-single
curve, AREA-two curve, POW-single curve, etc.), a sigmoi-
dal function was fitted to the data produced by each partic-
ipant (see Appendix). Likelihood ratios were used to assess
the best model of performance for each participant (Glover
& Dixon, 2004). The likelihood ratio determines the
explanatory power of a particular model. Because the like-
lihood ratio is based on model fit, it will favor more com-
plex models over simpler ones (generally, more
parameters lead to better fits). The models tested here vary
in complexity in that the single-curve models are nested
within their corresponding two-curve models: the single-
curve models are special cases of the two-curve models
in which parameters are shared for both congruent and
incongruent trial types. In cases like this, it is necessary
to correct for model complexity. Akaike’s information
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Exps. 1, 2, and 3: Judging continuous quantity
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log scale

Fig. 2. Group data from the continuous quantity judgment tasks of Experiment 1 (Fig. 2A: implicit instructions, homogeneous sets), Experiment 2 (Fig. 2B:
explicit instructions, homogeneous sets), and Experiment 3 (Fig. 2C: explicit instructions, heterogeneous sets). The x-axis shows the ratio of the quantities
that are compared according to each model. A shaded graph indicates that those data are plotted against the comparison ratios that should determine
performance on the task, according to the task instructions (cumulative area, in this Figure). The ratios that are more difficult to discriminate are those close
to 1, and the easiest ratios are those farther from 1. The y-axis shows the proportion of trials in which participants chose the first set. Group means are
plotted with respect to the four main types of models tested. The AREA column shows the ratios of the total Cumulative Veridical Areas of sets (the quantity
that should be maximized in the task). The POW column depicts the data plotted with respect to ratios of total Cumulative Subjective Areas of the sets,
assuming individual areas are underestimated in accord with previous psychophysical findings. The DIAM column depicts the data plotted with respect to
Cumulative Diameter ratios. The NUM column depicts the data plotted with respect to ratios of the Number of items in the sets. The data produced for all
three continuous quantity tasks were highly variable: see Tables 1-3 for the best models of individual participants’ performance.

criterion (AICc) was used to identify the best model of
performance, corrected for model complexity, for each par-
ticipant (AICc = AIC corrected for small sample sizes; Glo-
ver & Dixon, 2004; Burnham & Anderson, 2002; Hurvich
and Tsai; 1989; Akaike, 1973). Differences in AICc scores,
which provide a measure of the relative explanatory power
of each model, are reported in Table 1 for every model and
every participant in Experiment 1. The table identifies the
best model for each participant in addition to any other
models that were reasonably well supported (Burnham &
Anderson, 2002). Because this method will always choose
a “best” model even if no model provides a good explana-
tion of the data, fits with R? values less than 0.80 were ex-
cluded (signified by blank lines in the table).

For every participant, the model that best explained the
data was a single-curve model: a single explanation, based
solely on the ratio of quantities being compared, could best
account for performance patterns on both congruent and
incongruent trials. The data appear to support the illu-
sory-Stroop hypothesis rather than the interference
hypothesis: apparent effects of congruency disappear
when participants’ responses are considered with respect
to models of performance that account for the underesti-
mation of element area. Therefore, there appears to be no

true congruency effect at work: the data do not provide
evidence of Stroop interference between competing repre-
sentations of discrete and continuous quantity. Rather,
incongruent trials may produce lower levels of perfor-
mance because, when the well-documented tendency to
underestimate individual disk area is taken into account,
the trials categorized as “incongruent” simply require
more difficult discriminations.

Does this finding generalize to an explicit cumulative
area judgment task? Participants in the first experiment
received instructions that did not explicitly require them
to choose the set with the larger total cumulative area,
which might have led participants to perform in a manner
that would not apply to an explicit task. Experiments 2 and
3 tested this possibility.

3. Experiment 2: continuous quantity, homogeneous
sets, explicit instructions

Participants in Experiment 2 were presented with the
same stimuli used in Experiment 1, but they were asked
explicitly to choose the set with the larger continuous
amount (cumulative area).
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Table 1
Experiment 1, best models for each participant as determined by AICc differences

AREA; AREA, POW; POW, DIAM; DIAM, NUM; NUM, Best R2
” . = TR o o
2 Aokokokok .965
3 .955
4 Skokokok ok
5 e .987
6 *kokkkk * '895
7 * *okokokk .901
B . .884
9 e 798
11 . .830
12 .965
13 kokkokk
20 .993

The leftmost column gives participant numbers and the next eight columns represent the eight models tested. Best model of the eight models teste

—
d, ;

other models with substantial empirical support relative to the best, ; other models with considerably less support, ; models that are out of the running or
AlICc difference > 10 (essentially no empirical support; Burnham & Anderson, 2002), left blank. R-squared values are listed for the best supported model.

3.1. Methods

3.1.1. Participants

Eighteen adults participated for pay or for credit in the
Harvard University Psychology Department Study Pool. All
had normal or corrected-to-normal vision. All experimen-
tal procedures were approved by an Institutional Review
Board and informed consent was obtained from all
participants.

3.1.2. Stimuli and procedure

The stimuli and procedure were as in Experiment 1, ex-
cept that these participants were explicitly instructed to
choose the set with the greater aggregate area. This was
described in two ways to make sure participants under-
stood the goal: they were told to maximize the total
summed area of all the disks, or in other words, to choose
the set with more red pixels. All other aspects of the proce-
dure were the same as in Experiment 1, but no partici-
pants’ data were excluded.

3.2. Results and discussion

Fig. 2B depicts the group means for Experiment 2 plot-
ted with respect to each of the four models described ear-
lier. Again, there was great across-participant variability,
despite the explicit instructions in this task; the analyses
focus on the individual data. Tests of individual partici-
pants’ performance were carried out as in Experiment 1.
Table 2 summarizes the results of this analysis for every
participant in Experiment 2, listing the best model for
each. Again, there is no evidence of Stroop interference be-
tween competing representations of discrete and continu-
ous quantity. For every participant, the model that best
explained the data was a single-curve model, demonstrat-
ing that a single explanation provides the best account of

performance on both congruent and incongruent trials.
The performance cost for incongruent trials again appears
to be an effect of ratio (discrimination difficulty), not a true
effect of congruency dissociable from ratio.

The results of Experiment 2, like those of Experiment 1,
provide evidence against the idea that conflicting numeri-
cal information interfered with these judgments of cumu-
lative continuous quantity. In Experiment 2, however, all of
the circles within a set were the same size, as in Experi-
ment 1. It is possible that the assessment of cumulative
area across homogeneous sets is a special case, and that
the use of heterogeneous sets would produce different re-
sults. Experiment 3 tested this possibility.

4. Experiment 3: continuous quantity, heterogeneous
sets, explicit instructions

The experiment was conducted again with explicit
instructions and one additional change: in this experiment
the disk size varied both within and across sets.

4.1. Methods

4.1.1. Participants

Seventeen adults participated for pay or for credit in the
Harvard University Psychology Department Study Pool. All
had normal or corrected-to-normal vision. All experimen-
tal procedures were approved by an Institutional Review
Board and informed consent was obtained from all
participants.

4.1.2. Stimuli and procedure

Participants were again explicitly instructed to choose
the set with the greater aggregate area. The stimuli and
procedure were the same as in Experiment 2 except that
in Experiment 3, disk size varied within a set as well as
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Table 2
Experiment 2, best models for each participant as determined by AICc differences

AREA; AREA, POW; POW, DIAM; DIAM, NUM;, NUM, Best R?
1 * koK o .854
2 sekokokok .895
3 dkokokok -903
4 okokokk ‘859
5 Aokokokok .945
6 kokkokok '940
7 dokokokok -842
8 Hokokokok .92]
9 * skkokkok '947
11 ennn .957
13 873
]4 oKk ok ok
16 e .853
17 912
18

The leftmost column gives participant numbers and the next eight columns represent the eight models tested. Best model of the eight models tested, *****;
other models with substantial empirical support relative to the best, ; other models with considerably less support, ; models that are out of the running or
AlCc difference > 10 (essentially no empirical support), left blank. R-squared values are listed for the best supported model.

between sets. The fixed disk sizes from Experiments 1 and 2
now became the average sizes for Experiment 3. Disk sizes
varied from four pixel-widths less than their previous fixed
diameters (in Experiments 1 and 2) to four more than their
previous diameters, such that sets that had previously con-
tained the smallest disks, with 10-pixel-width diameters,
now contained disks that varied from 6-14. Sets that had
previously contained the largest disks, with 20-pixel-width
diameters, now contained disks that varied from 16 to 24.
This meant that the diameters varied from 60%-140% of
the mean for the smallest-disk sets, and from 80%-120%
of the mean for the largest-disk sets, in order to ensure that
the mean diameters of the sets corresponded well with the
mean areas (for example, the sets with mean diameters of
10 pixel-widths also had mean areas close to 257 pixels).

4.2. Results and discussion

Participants chose the set with the larger number of
items on 77% of the trials. Fig. 2C depicts the group means
for Experiment 3 plotted with respect to each of the four
model types. Again, the group data were highly variable
(this was the case for all three experiments depicted in
Fig. 2, even though participants completed a large number
of trials and received explicit instructions for Experiments
2 and 3). Tests of individual participants’ performance
were carried out as in the previous experiments?; Table 3

Power functions describing perceived individual element size have
been measured in tests of magnitude estimation, when the size of an
individual circle is explicitly estimated. These tasks show that the exponent
determining the perceived sizes of individual circles and many other 2D
shapes is around 0.8. The same rule also appears to apply for judgments of
mean size across heterogeneous sets (that is, the size of an individual circle
is estimated according to this rule, and so is the mean size within a set;
Chong & Treisman, 2003; Chong & Treisman, 2005). For this reason, the
models may reasonably be expected to apply in the same manner for both
homogeneous and heterogeneous sets.

summarizes the results of this analysis for each participant
in Experiment 3, listing the best model for each. Fig. 3 de-
picts individual data from four participants in Experiment
3 plotted for all four of the models, providing an example
of the range of responses produced.

For Experiments 1, 2, and 3, each type of single-curve
model provided the best explanation for some of the par-
ticipants (approximately 11% AREA, 25% DIAM, 33% POW,
and 18% NUM). For 11% of the participants, none of the four
models tested provided a good explanation of the data.
Considering the results summarized in Tables 1-3 taken
together, there was not a single participant for whom an
unpooled two-curve model received the most empirical
support. This means that for every participant, a single
curve fit both incongruent trials and congruent trials.
Therefore there was no evidence of an effect of trial con-
gruency separable from effects of discrimination ratio,
and therefore no support for an interference-based expla-
nation of these data.

Reaction time (RT) data also support the illusory-Stroop
interpretation. Both the Stroop interference hypothesis and
the illusory-Stroop hypothesis predict that there should be
differences in RT between congruent and incongruent tri-
als, but the two hypotheses do provide differing explana-
tions of these RT differences which lead to testable
predictions. The illusory-Stroop hypothesis predicts that
there should be systematic differences in RT patterns
across participants whose data are best fit by the AREA,
POW, and DIAM models. Recall that the cumulative diam-
eter discrimination ratios for the incongruent trials are
much more difficult (closer to 1:1) than the cumulative
diameter ratios for the congruent trials (see Fig. 2). This
means that a participant whose data are best fit by the
DIAM model (who is, in effect, underestimating individual
disk areas severely) is likely to exhibit a clear RT difference
between congruent and incongruent trials, due to the sys-
tematic difference in cumulative diameter ratios across
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Table 3
Experiment 3, best models for each participant as determined by AICc differences

AREA; AREA, POW; POW, DIAM, DIAM, NUM;, Best R?
1 : 985
2 e 973
3 *k dokkokk .952
4 . .908
5 . 941
6 941
7 * *okkokk
8 Hokokokk .983
9 sekokokok '970
11 .975
12 Aokokokok
14 ennn .883
17 953

The leftmost column gives participant numbers and the next eight colymns represent the eight models tested. Best model of the eight models tested, *****;
other models with substantial empirical support relative to the best, ; other models with considerably less support, ; models with AICc difference > 10
(essentially no empirical support) or models that are out of the running entirely, left blank. R-squared values are listed for the best supported model.
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Exp. 3: Judging continuous quantity, individual data

m Congruent

A Incongruent

(physical areas)
Ratio Set 1:Set 2
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(subjective areas)
Ratio Set 1:Set 2
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Ratio Set 1:Set 2

log scale

Ratio Set 1:Set 2
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Fig. 3. Examples of models’ fits to four individual participants’ data from Experiment 3 (judging continuous quantity, with explicit instructions, in

heterogeneous sets). Curve fits are shown for the best model for each participant (see Table 3 for best models for every participant).

these two trial types (not as a direct result of their congru-
ency status). In contrast, a participant who can estimate

individual disk areas quite accurately (one whose data
are best fit by the AREA model) may exhibit little or no
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RT difference between congruent and incongruent trials.
This is because the two trial types were closely equated
with respect to cumulative veridical area ratios. Partici-
pants whose data are best fit by the POW model should fall
somewhere in between: these participants apparently did
not have access to accurate estimates, but their underesti-
mation of individual disk area was not as severe as that of
the DIAM participants. For these participants, the incon-
gruent trials were associated with cumulative subjective
area ratios that were somewhat more difficult than those
associated with the congruent trials. Therefore the illu-
sory-Stroop hypothesis makes the following predictions
about RT differences for congruent vs. incongruent trials:
AREA participants should show little or no difference,
POW participants should show some difference, and DIAM
participants should show the greatest difference. This pre-
diction was tested using RT data from the participants in
Experiments 1 and 2 whose data had been best fit by these
three models (nearly all participants in Experiment 3 were
in the POW category, so their data cannot help to differen-
tiate between the two hypotheses). Four participants fell
into the AREA category, twelve fell into the POW category,
and ten had been classified as DIAM participants. Average
RT difference scores (Incongruent trial RT - Congruent trial
RT) were 2 ms for the AREA group, 57 ms for the POW
group, and 98 ms for the DIAM group, consistent with
the predictions of the illusory-Stroop hypothesis. A one-
way ANOVA performed on the individual participants’ RT
difference scores for these three groups confirmed the ef-
fect of model category (F(2,23) =8.086, p <.005).

Overall, the first three experiments support the idea that
there was no Stroop interference between mental representa-
tions of cumulative area and discrete number during these
aggregate continuous quantity judgment tasks. The final
experiment tested the possibility that a discrete quantity
judgment task might produce evidence of Stroop interference
effects from the irrelevant (continuous) dimension.
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5. Experiment 4: judging number (discrete quantity)

Can adults make accurate judgments of discrete num-
ber and ignore conflicting continuous quantity informa-
tion? This experiment used a procedure identical to that
of Experiment 3 with a new set of participants, with one
difference: the new task required choosing the set with
the larger number of elements.

5.1. Methods

5.1.1. Participants

Seventeen adults participated for pay or for credit in the
Harvard University Psychology Department Study Pool. All
had normal or corrected-to-normal vision. All experimen-
tal procedures were approved by an Institutional Review
Board and informed consent was obtained from all
participants.

5.1.2. Stimuli and procedure

The stimulus set and procedure were taken from Exper-
iment 3, but participants were explicitly instructed to
choose the set with the larger number of elements.

5.2. Results and discussion

Participants chose the set with the larger number of
items on 88% of the trials. Group means for all four model
types are presented in Fig. 4. Unlike the data from the pre-
vious three experiments, these data demonstrate no differ-
ence between group performance levels for congruent and
incongruent trials. Participants are apparently able to
judge number and ignore continuous quantity successfully
at every ratio, at least for the stimulus types and compar-
ison difficulties tested here. It is possible that incongruent
trial costs would be observed for more difficult numerical

m Congruent

Exp. 4: Judging discrete quantity A Incongruent
AREA model POW model DIAM model NUM model
group means group means group means group means
. A Aa ] A A g A Am W fm [4]
A n A | | A n Zi
| | n u ]
Exp. 4
P(Set 1)
cll!I/é A..l'.AA :J./\IAA n!ﬁg
0.3 1.0 3 1.0 1.0 1.0
Cumulative Area Cumulative Area Cumulative Diameter Number
(physical areas) (subjective areas) Ratio Set 1:Set 2 Ratio Set 1:Set 2
Ratio Set 1:Set 2 Ratio Set 1:Set 2 log scale log scale

log scale log scale

Fig. 4. Group data from the discrete quantity judgment tasks of Experiment 4 (compare to the continuous quantity judgment data in Fig. 2). A shaded graph
indicates that those data are plotted against the comparison ratios that should determine performance on the task, according to the task instructions
(number of items, in this Figure). Group means are plotted with respect to the four main types of models tested. The AREA column shows the ratios of the
total Cumulative Veridical Areas of sets (the quantity that should be maximized in the task). The POW column depicts the data plotted with respect to ratios
of total Cumulative Subjective Areas of the sets, assuming individual areas are underestimated in accord with previous psychophysical findings. The DIAM
column depicts the data plotted with respect to Cumulative Diameter ratios. The NUM column depicts the data plotted with respect to ratios of the Number
of items in the sets (the quantity that participants should attempt to maximize, according to task instructions). The data produced for the discrete quantity
tasks were far less variable than the data produced for the continuous quantity task: see Table 4 for the best models of individual participants’ performance.
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Table 4
Experiment 4, best models for each participant as determined by AICc differences
AREA; AREA, POW; POW, DIAM; DIAM, NUM; NUM, Best R?
1 :**** ***** See text
2 * Aokokokok ‘960
3 . See text
4 kokkokk ‘987
5 skeakok ok .968
6 kokkkok '997
7 kokkkk .958
8 eokk oKk .976
9 skeokok ok '993
10 . See text
11 o 932
12 827
14 . 972
15 . .984
16 e 979
17 .933

The leftmost column gives participant numbers and the next eight cglumns represent the eight models tested. Best model of the eight models tested, *****;
other models with substantial empirical support relative to the best, ; other models with considerably less support, ; models that are out of the running or
AlCc difference >10 (essentially no empirical support), left blank. R-squared values are listed for the best supported model.

ratios. For fourteen of the seventeen participants, perfor-
mance was best explained by the one-curve NUM model
(suggesting that they compared the number of items in
the first set to the number of items in the second as they
were instructed®), and a single curve best explained perfor-
mance patterns for both the congruent and incongruent tri-
als (see Table 4). The average estimated Weber fraction for
these fourteen participants’ numerosity judgments was
0.17, comparable to estimates from previous studies. Indi-
viduals’ Weber fraction estimates varied from 0.07 to 0.28.
Fig. 5 shows examples of individual data from four of these
fourteen participants.

For three of the seventeen participants, the data were
best explained by a two-curve NUM model: there was a
difference between the congruent and incongruent trials
for these three participants. However, the direction of this
difference is opposite to that predicted by the interference
hypothesis: if cumulative area information were interfer-
ing with number judgments, we would expect to see better
discrimination for congruent trials. In fact, these three par-
ticipants’ data show the opposite pattern: the functions fit-
ted to their incongruent trial data have steeper slopes than
those fitted to their congruent trials.

The four experiments differ in their findings, but they
are consistent with the same general conclusion. Like
Experiments 1 through 3, Experiment 4 provides evidence
against the idea that total continuous amount and discrete
quantity are automatically represented when we look at a
set such that their representations compete for behavioral
control leading to interference between quantitative
dimensions. Experiments 1 through 3 demonstrated per-
formance costs for incongruent trials during cumulative
area judgments, but showed that these costs were not
due to Stroop interference. Experiment 4 produced no per-

3 This experiment does not necessarily tell us about the mechanism used
to create this representation of number; the data are consistent with
multiple theories of the construction of number representations.

formance costs for incongruent trials during numerical
quantity judgments.

6. General discussion

This study found no evidence of Stroop interference be-
tween representations of discrete and continuous quantity
in adults’ comparative judgments with large sets of ele-
ments. Instead, performance patterns that are often inter-
preted as evidence of Stroop interference were shown to
reflect an “illusory-Stroop” effect.

In the first three experiments, participants were asked
to make comparative judgments of the cumulative areas
of large sets of disks under a variety of experimental con-
ditions. Performance costs were observed for the incongru-
ent trials (when numerical quantity information conflicted
with cumulative area information), but these costs were
not best explained in terms of interference from the irrele-
vant dimension of number. Instead, the illusory-Stroop
hypothesis provided a better explanation of the incongru-
ent trial costs observed in these tasks. According to this
hypothesis, participants judge cumulative area by combin-
ing estimates of individual element sizes such that individ-
ual areas are underestimated, in accord with a long history
of psychophysical research. The hypothesis predicts that
incongruent trials should produce performance costs rela-
tive to congruent trials (in which number and cumulative
area are not in conflict), because if individual elements’
areas are underestimated, trials classified as incongruent
will simply require more difficult discriminations (see
Fig. 1).

Participants in a fourth experiment were asked to make
comparative numerical (discrete) quantity judgments,
choosing the numerically larger set from two sets of disks.
Here, no performance differences between congruent and
incongruent trials were observed. Participants’ numerical
judgments were apparently not subject to interference
from competing representations of cumulative area in this
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Exp. 4: Judging discrete quantity, individual data
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Fig. 5. Examples of models’ fits to four individual participants’ data from Experiment 4 (judging discrete quantity, explicit instructions, heterogeneous sets).
The stimuli were the same as those used in Experiment 3; only the task instructions were different. Curve fits are shown for the best model for each

participant (see Table 4).

task. Taken together, the findings from these four experi-
ments show that, at least under the conditions tested here,
there is no evidence of Stroop interference between repre-
sentations of number and cumulative area. Though it is
constructed like a Stroop task and produces data that mi-
mic Stroop interference, this task does not function as an
interference paradigm.

6.1. Relation to previous studies using similar tasks

Previous findings of performance costs for incongruent
trials in similar studies of adults’ discrete and continuous
quantity judgments have been interpreted as evidence
for the automatic extraction and representation of both
number and cumulative area, such that these representa-
tions compete for behavioral control and produce Stroop
interference on incongruent trials (Hurewitz et al., 2006).
The present study offers an alternative explanation for
incongruent trial performance costs, while providing evi-
dence against Stroop interference effects (at least for the
procedures used in this series of studies). What can this tell
us about the conclusions drawn from previous studies
using similar tasks?

One possibility is that the incongruent trial costs ob-
served in previous studies are also instances of an illusory

Stroop effect, and that a similar analysis of the data would
cause apparent interference effects to disappear (as in the
present study). This may be the case. The current cumula-
tive area judgment tasks produced data compatible with
the results obtained from previous studies: the studies dif-
fer fundamentally in their interpretation of the incongru-
ent trial cost, but both studies did find an incongruent
cost. If similar mechanisms do underlie participants’
cumulative area judgments in both types of tasks, even
greater illusory Stroop effects could have been produced
in the previous study, because the ratios of cumulative
areas for congruent vs. incongruent trials were not equated
in the previous study as they were in the present study.
This could amplify any illusory Stroop effects of the sort
observed here, rendering incongruent trial discriminations
even more difficult relative to congruent trials (again, pro-
vided that the same mechanisms are at work).

A second possibility is that Stroop interference effects
do exist under the conditions of the previous study, though
they do not exist for the task conditions reported here. The
current experiments used large sets (sets of nine elements
or more), and the previous study used smaller sets (sets of
seven elements or fewer). It is certainly possible that in the
smaller-set range, there are Stroop interference effects be-
tween quantity dimensions; different patterns of perfor-
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mance have been reported in quantity processing para-
digms that employ small vs. large sets (e.g. Hauser &
Spelke, 2004; Mandler & Shebo, 1982; Xu, 2003; but see
Balakrishnan & Ashby, 1992; Cordes, Gelman, Gallistel, &
Whalen, 2001; Izard, Dehaene-Lambertz, & Dehaene,
2008). There were other differences between this study
and the previous study as well: the former used smaller
disks and sets were presented sequentially, and the latter
used larger disks and sets were presented simultaneously.
It is possible that interference does exist under the condi-
tions of the previous studies, and that these stimulus dif-
ferences are responsible. Further experiments are needed
to distinguish between these possibilities.

The present numerical judgment task did not produce a
difference in performance between congruent and incon-
gruent trials, so there was no opportunity to explore
potential Stroop interference effects from irrelevant con-
tinuous quantity information when participants explicitly
judged discrete quantity. This finding differed from the
results of the previous study, in which incongruent trial
performance costs were observed when participants made
numerical judgments (Hurewitz et al., 2006). The two tasks
may have produced different results because of differences
in their stimuli and procedures; for example, the smaller
sets used in the previous task or the simultaneous presen-
tation of the sets may be responsible for the incongruent
trial costs observed previously. The data reported here
cannot speak to the question of whether the incongruent
trial costs observed in the Hurewitz et al. task do indeed
reflect a Stroop interference effect, as reported by the
authors. Further experiments with similar stimuli will be
necessary to explore the possibility that related types of
illusory Stroop effects might explain incongruent trial costs
in numerical judgments.

6.2. Constructing representations of cumulative area

These experiments do not provide explicit tests of the
mechanisms underlying the construction of cumulative
area representations, but they do suggest that, at least un-
der the conditions tested here, adults do not simply ignore
object boundaries and assess cumulative area through
some perceptual summation process, perhaps adding up
all of the appropriately-colored pixels in the scene. The
models that were required to explain performance in these
tasks involved the estimation of individual element size,
suggesting that participants assessed cumulative area
through some computation over individual size estimates.

The models did not specify the specific kinds of compu-
tations that might have been employed to combine indi-
vidual size estimates. For example, a participant whose
data best supported the DIAM model could have been sum-
mating all of the individual diameters in a set, or s/he could
have been assessing the diameter of a single disk (or the
mean diameter in the set) and multiplying by the total
number of disks. Which type of mechanism is more likely
to underlie these judgments? Are summation processes
more likely, or is it more likely that participants construct
representations of cumulative area by multiplying the
mental magnitudes that represent number and individual
element size? A growing body of work on statistical sum-

mary representations of sets suggests that items in sets
may not be processed as individuals by the visual system;
rather, statistical information about the set as a whole
appears to be rapidly extracted (Ariely, 2001; Chong &
Treisman, 2003; Chong & Treisman, 2005; Sussman &
Scholl, accepted for publication; but see Myczek & Simons,
2008). It is possible that multiplicative models incorporat-
ing estimates of numerical quantity and mean element size
are more parsimonious and more compatible with other
findings; however, further experiments will be needed to
distinguish between these possibilities quantitatively.

Whether representations of cumulative area are the re-
sult of a summation process or of a computation over esti-
mates of element size and numerosity, it seems likely that
the element size estimates that build these representations
are not veridical. At least under the conditions of these
experiments, only a very few participants produced data
suggesting that they used accurate estimates of individual
area to construct representations of cumulative area (these
were the few participants whose data supported the AREA,
or cumulative veridical area, model of performance - con-
sistent with the idea that for these few participants, the
Stevens exponent for disk area was 1.0). Most participants
in the cumulative area tasks produced data suggesting they
either underestimated individual element area according
to a power law (with an exponent of 0.8, as suggested by
previous research), or that they simply used diameter as
an estimate of disk size.

6.3. Sources of individual difference

When participants were asked to make judgments of
cumulative area, they rarely produced data that could be
fit well by a model that assumed their choices were truly
based on some quantity equivalent to physical cumulative
area (the AREA model). Only six individual participants
produced data that were fit best by such a model, and there
was a great deal of individual difference in participants’
data. The analyses used in these studies binned partici-
pants into categories determined by the performance mod-
el that best fit their data: AREA (corresponding to the AREA
model described above), POW (for those whose data were
best explained by a model assuming that subjective disk
area was a power function of veridical disk area, with an
exponent of 0.8 as suggested by previous literature), DIAM
(for those whose comparisons were based on some quan-
tity equivalent to cumulative diameter), and NUM (for
those who appeared to choose the set with the larger num-
ber). In the three experiments involving cumulative area
judgments, participants produced data that placed them
in all four categories (though nearly all of the participants
fell into the first three). Cumulative area judgments clearly
produce individual differences in performance, but what is
the best explanation of these differences?

It is possible that the categories used in this initial inves-
tigation are indeed accurate reflections of the perceptual
and cognitive processes underlying these judgments. On
this view, AREA participants had access to some computa-
tion that allowed them to accurately assess areas (perhaps
a learned strategy), POW participants used a different
computation, and DIAM participants really did perform a
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computation involving an estimate of diameter. If so, the
differences in individual patterns of performance are due
to true differences in the computations employed by these
participants.

It is also possible, and perhaps more likely, that all of the
AREA, POW, and DIAM participants performed the cumula-
tive area task using the same underlying process, and that
the categories chosen for this study do not reflect a true cat-
egorical difference in participants’ judgments. The AREA
model, for example, is equivalent to a model in which sub-
jective individual disk area is a power function of veridical
disk area with an exponent of 1. Note that the POW model
used in this initial report of the illusory-Stroop phenome-
non imposed an exponent of 0.8 (based on previous
findings), but studies do report wide individual varia-
tion in power functions for two-dimensional area (e.g.
Teghtsoonian, 1965). Future experiments may find that
the AREA, POW, and DIAM categories should be subsumed
under a more general POW model, in which the Stevens
exponent is an additional parameter rather than being fixed
at 0.8. The strongest test of this possibility would measure
the exponents that govern estimates of disk area in each
individual participant, allowing researchers to use the mea-
sured value of the Stevens exponent to guide the fit of this
revised and more general power function model of cumula-
tive area judgment.* If this speculative explanation is cor-
rect, the individual performance differences observed in
the present tasks may simply reflect individual differences
in Stevens exponents for the estimation of individual disk
areas, rather than resulting from individual differences in
the computation of cumulative area.

Nearly all participants in the explicit number judgment
task were placed in the NUM category. These participants
nearly always produced data that could be fit very well by
the NUM model, suggesting that they did base their compar-
isons on the numbers of disks present in each set (or on
some other equivalent quantity). Despite the fact that the
number task required discrimination based on an abstract
quantitative dimension, participants were clearly more
accurate when judging numerical quantity (Experiment 4)
than when judging cumulative area for identical stimuli
(Experiment 3). This result is consistent with the recent
finding that infants can detect smaller changes in numerical
quantity than in cumulative area when presented with large
sets of elements (Cordes & Brannon, 2008).

4 Studies measuring individual participants’ power functions for disk
area may also allow for more nuanced analyses of RT data than the present
studies could provide (see Exp. 3 Results & Discussion). The illusory-Stroop
hypothesis predicts that the magnitude of the incongruent-congruent RT
difference observed, in a task designed like this one, should be correlated
with the Stevens exponent. Participants with an exponent near 1 should
show little RT difference for congruent vs. incongruent trials (provided that
cumulative area discrimination ratios are equated across trial types).
Participants with smaller exponents should show greater RT differences,
because the more extreme the underestimation of individual element area,
the more difficult the discriminations will tend to be for incongruent trials
relative to congruent trials.

6.4. Potential relevance to controversies from the
developmental literature

Although it is clearly speculative to make connections
between these adult data and patterns of behavior ob-
served in infants, the Stroop interference effects explored
here have been explicitly proposed as a potential explana-
tion for a pattern of inconsistent findings from the devel-
opmental literature: that infants exhibit sensitivity to
discrete quantity under some conditions, while they ap-
pear sensitive only to continuous quantity under others
(Cordes & Gelman, 2005; Hurewitz et al., 2006). The logic
of the argument is as follows: if we form representations
of cumulative area and discrete number whenever we look
at a set, such that irrelevant quantitative information in-
trudes even upon adults’ explicit judgments, we might rea-
sonably expect infants to exhibit shifting patterns of
behavior when confronted with sets under differing exper-
imental conditions (Hurewitz et al., 2006).

The present findings suggest that claims of Stroop inter-
ference should be examined carefully before they are fa-
vored as an explanation of inconsistent infant behavior,
though further research in adults and children will be
needed in order to explore the relative explanatory
strengths of the interference hypothesis and the illusory-
Stroop hypothesis under a broader range of experimental
conditions. If the illusory-Stroop hypothesis does turn out
to apply to adults’ quantity judgments with small sets as
well as the large sets tested here, then there will be no
compelling evidence for the existence of competition be-
tween representations of continuous and discrete quantity
in adults. While we cannot assume that the same would
hold true for other populations, a lack of evidence for com-
petition and interference in adults would remove some of
the motivation for favoring this account in infants. If, alter-
natively, the interference hypothesis does turn out to pro-
vide a good explanation of adults’ performance in quantity
judgments with small sets, then Stroop interference may
be able to provide an explanation of the infant findings.
Many of the most puzzling results from studies with in-
fants involve their behavior when confronted with very
small sets of objects: sometimes they appear to notice
changes in numerical quantity, but under other conditions
they ignore seemingly obvious numerical changes,
responding only to changes in continuous amount (e.g.
Clearfield & Mix, 1999; Feigenson et al., 2002; Feigenson
et al,, 2002; but see Cordes & Brannon, in press).

7. Conclusion

Recent adult behavioral studies have led to the sugges-
tion that both cumulative area and numerical quantity are
extracted automatically when we apprehend a set of ele-
ments (perhaps along with many other quantitative
dimensions), and that their representations compete for
behavioral control, such that quantitative judgments
regarding one stimulus dimension are subject to interfer-
ence from the irrelevant dimension (Hurewitz et al.,
2006). The present study found no evidence of interference
between number and cumulative area representations in
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adults, at least for the types of stimuli tested here. Though
participants in the present cumulative area judgment tasks
did produce the patterns of performance that are often
interpreted in terms of Stroop interference (performance
costs for “incongruent” trials, in which the task-irrelevant
dimension, number, conflicted with the task-relevant
dimension, area), these patterns were shown to be due to
an illusory Stroop effect. The performance costs were not
best explained in terms of interference from the irrelevant
dimension of number. Instead, the data support the idea
that participants judge cumulative area by combining esti-
mates of individual element sizes such that individual
areas are underestimated. This model of cumulative area
judgment predicts that incongruent trials should produce
a performance cost because if individual elements’ areas
are underestimated, trials classified as incongruent will
simply require more difficult discriminations.

These experiments provide evidence against Stroop
interference between representations of continuous and
discrete quantity in adults’ judgments of large sets, under
the conditions tested here, and they demonstrate that
adults’ discriminations of cumulative area are more diffi-
cult than discriminations of number. They further provide
support for a particular class of models of the construction
of representations of cumulative area, in which cumulative
area is assessed through a computation that combines
inaccurate estimates of individual element area.
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Appendix

A sigmoidal function in the form of a four-parameter
logistic equation was fitted to individual participants’ data
such that upper and lower asymptote parameters, in addi-
tion to slope and position parameters, were estimated
rather than being fixed in order to avoid bias in slope
and position estimates caused by observers’ lapses
(Wichmann & Hill, 2001). Analyses were also performed
with asymptotes fixed at 0 and 1, with the same results
for most participants; however, some participants’ data
could not be fitted well in this manner (e.g. Fig. 3, S9).
The equation was Y = LA + (UA — LA)/(1 + 10*((o« — CR)xf)),
where « is the position parameter, f is the slope parameter,
LA is the lower asymptote, UA is the upper asymptote, and
CR is the Comparison Ratio (the basis for comparison under
each model tested). The AREA model assumes that the ba-
sis for comparison (CR) is equivalent to (mr2N;)/(mr2Ny),
where r; and r, are the fixed disk radii (in Experiments 1

and 2) or average disk radii (in Experiments 3 and 4) in sets
1 and 2, respectively, and N; and N, are the number of
disks in each set. The POW model assumes that the basis
for comparison is ((mr2)°%(N;))/((mr2)°3(N,)), where
and r; are the fixed disk radii (in Experiments 1 and 2) or
average disk radii (in Experiments 3 and 4) in sets 1 and
2, respectively, and N; and N, are the number of disks in
each set. The DIAM model assumes that the basis for com-
parison is equivalent to (r;N)/(r2N3), where r; and r, are
the fixed disk radii (in Experiments 1 and 2) or average
disk radii (in Experiments 3 and 4) in sets 1 and 2, respec-
tively, and N; and N, are the number of disks in each set.
The NUM model assumes that the basis for comparison is
equivalent to N{/N;, where N; and N, are the number of
disks in each set.
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